1. Define the symbols in the acceleration formula:

\[\mathbf{a}_B = \mathbf{a}_{B/Axyz} + \mathbf{a}_{B'} + 2 \Omega \times \mathbf{v}_{B/Axyz} \]

2. The Geneva mechanism shown consists of a star wheel \(S \) and a driving wheel \(D \), as shown. It is known that the driving wheel \(D \) rotates with a constant angular velocity \(\omega_D = 3 \text{ rad/s} \). For the instant when \(\theta = 60^\circ \), determine the angular velocity \(\omega_S \) and the velocity \(\mathbf{v}_{B/S} \) of the engaging pin \(B \) relative to the wheel \(S \).

1. \(OXYZ \): fixed reference frame. \(Axyz \): rotating reference frame.

\(\mathbf{a}_B = \) acceleration of \(B \) measured in \(OXYZ \)

\(\mathbf{a}_{B/Axyz} = \) acceleration of \(B \) measured in \(Axyz \)

\(\mathbf{a}_{B'} = \) acceleration of \(B' \) measured in \(OXYZ \), where \(B' \) is a point embedded in \(Axyz \) but coincides with point \(B \) at the instant under consideration

\(\Omega = \) angular velocity of \(Axyz \) measured in \(OXYZ \)

\(\mathbf{v}_{B/Axyz} = \) velocity of \(B \) measured in \(Axyz \)

2. Let \(AXYZ \) be the fixed reference frame and \(Axyz \) be embedded in the star wheel with the \(x \) axis directed along the line \(AB \).

\[\omega_S = 1.225 \text{ rad/s} \]

\[\mathbf{v}_{B/S} = 16.17 \text{ in./s} \]

\[\theta = 132.4^\circ \]