A box beam is made of two 1 × 6-in. and two 1 × 4-in. planks nailed together as shown. The beam is subjected to a vertical shear \(V = 500 \) lb. Knowing that the allowable shearing force in each nail is 180 lb, determine (a) the largest permissible spacing \(s \) of the nails, (b) the corresponding maximum shearing stress \(\tau_m \) in the beam.

\[
2 (180) = \frac{500[1(6)(2.5)]s}{\frac{1}{12}(6^4 - 4^4)} \\
so s = 4.16 \text{ in.} \tag{5}
\]

\[
\tau_m = \frac{500[3(6)(1.5) - 2(4)(1)]}{\frac{1}{12}(6^4 - 4^4)(1+1)} = 54.8077 \\
\tau_m = 54.8 \text{ psi} \tag{5}
\]