The length of the 0.0625-in.-diameter steel wire CD has been adjusted so that with no load applied, a gap of 0.2 in. exists between the end B of the rigid beam ACB and a contact point F. Knowing that the modulus of elasticity is $E = 29 \times 10^6$ psi for the steel wire, determine the weight W of the block that should be placed as shown on the beam in order to cause contact between B and F.

\[\delta_{CD} = \frac{8}{40} = 0.04 \text{ in.} \]

\[\delta = \frac{PL}{AE} : \quad 0.04 = \frac{F_{CD}(25)}{\pi (0.0625/2)^2 (29 \times 10^6)} \quad F_{CD} = 142.35 \text{ lb} \]

\[+\sum M_A = 0 : \quad 8F_{CD} - 22W = 0 \quad W = 51.76 \]

\[W = 51.8 \text{ lb} \]