A spacecraft S approaches Venus along a hyperbolic trajectory SQ of eccentricity $\varepsilon = 2$ as shown. As it reaches Q, retrorockets are fired momentarily to insert it into an elliptic orbit as indicated. If the mass of Venus is 0.8144 times the mass of the Earth, determine for the spacecraft (a) its speed as it approaches Q, (b) its speed after firing of retrorockets at Q, (c) the time required to travel from Q to P.

Let kilometer (km) and seconds (s) be used in the calculations.

\begin{align*}
(a) \quad & \frac{1}{r_Q} = \frac{GM_V}{h_1^2} (1 + \varepsilon \cos \theta) = \frac{GM_E (M_V/M_E)}{r_Q^2 (v_Q)^2_{hyp}} (1 + \varepsilon \cos \theta), \quad GM_E = g_E R_E^2 \\
& \frac{1}{16 \times 10^3} = \frac{(9.81 \times 10^{-3}) (6370)^2 (0.8144)}{(16 \times 10^3)^2 (v_Q)^2_{hyp}} (1 + 2 \cos 0) \quad (v_Q)_{hyp} = 7.80 \text{ km/s} \tag{4}

(b) \quad & \frac{1}{r_P} + \frac{1}{r_Q} = \frac{2GM_V}{h_2^2} = \frac{2GM_E (M_V/M_E)}{r_Q^2 (v_Q)^2_{ell}} \\
& \frac{1}{10 \times 10^3} + \frac{1}{16 \times 10^3} = \frac{2(9.81 \times 10^{-3}) (6370)^2 (0.8144)}{(16 \times 10^3)^2 (v_Q)^2_{ell}} \quad (v_Q)_{ell} = 3.94785 \text{ km/s} \quad (v_Q)_{ell} = 3.95 \text{ km/s} \tag{3}

(c) \quad & t_{QP} = \frac{\tau}{2} = \frac{\pi (r_P + r_Q) \sqrt{r_P r_Q}}{2h_2} = \frac{\pi [(10 + 16) \times 10^3] \sqrt{10} (16) \times 10^3}{2(16 \times 10^3)(3.94785)} \quad s = 8178.5 \text{ s} \quad t_{QP} = 2.27 \text{ hours} \tag{3}
\end{align*}