1. (30%) For the rigid body carrying the loads shown in Fig. P1, determine (a) the tension T_{EF} in the cable EF, (b) the reaction force A and the reaction moment M_A at the universal joint support A.

2. (30%) The centroid of the shaded area shown in Fig. P2 is at (x, y). Determine (a) the moments of inertia I_y, (b) the radius of gyration k_y, (c) the abscissa x of C, (d) the centroidal moment of inertia I', (e) the moments of inertia I_x.

3. (5% each) Circle on this test sheet the correct or nearest item for each of the following:

 A. The centroid of the shaded composite area shown is at (x, y). If $r = 3.4$ m, the value of x is
 (a) 0.461 m. (b) 0.439 m. (c) 0.417 m. (d) 0.396 m. (e) 0.374 m. (f) 0.352 m. (g) 0.330 m.
 B. The centroid of the shaded composite area shown is at (x, y). If $r = 3.4$ m, the value of y is
 (a) 4.89 m. (b) 4.68 m. (c) 4.47 m. (d) 4.25 m. (e) 4.04 m. (f) 3.83 m. (g) 3.62 m.
 C. A truss is shown, where $P = 32$ kN and $Q = 3$ kN. The magnitude of F_{AB} in member AB is
 (a) 21.0 kN. (b) 22.9 kN. (c) 24.8 kN. (d) 26.7 kN. (e) 28.6 kN. (f) 30.5 kN. (g) 32.4 kN.
 D. A truss is shown, where $P = 32$ kN and $Q = 3$ kN. The magnitude of F_{FG} in member FG is
 (a) 7.61 kN. (b) 7.06 kN. (c) 6.50 kN. (d) 5.94 kN. (e) 5.39 kN. (f) 4.83 kN. (g) 4.27 kN.

4. (5% each) Non-numerical problem.
 A. Describe the parallel-axis theorem for area moments of inertia and include a sketch to illustrate it.
 B. Define a simple truss and include a sketch to illustrate such a truss with loads and supports.
 C. Define a compound truss and include a sketch to illustrate such a truss with loads and supports.
 D. Define a complex truss and include a sketch to illustrate such a truss with loads and supports.