Answers to MEEG 2003 Sample Test Id

1.

(a) \(\mathbf{M}_A = 210 \mathbf{i} + 180 \mathbf{j} + 60 \mathbf{k} \) N·m

(b) \(M_{AB} = 40 \) N·m

(c) Since \(M_{AB} > 0 \), the action of \(\mathbf{F} \) tends to loosen the joint at \(A \).

(d) \(d_{11} = 4.72 \) m

(e) \(d_{s2} = 1.061 \) m

2.

(a) \(L = 21.6 \) in.

(b) \(P = 176 \) lb

3.

A. (e)

B. (c)

C. (f)

D. (g)

4.

A. (a) In terms of pound-mass (lbm), 1 lb is defined to be the weight of 1 lbm, where the gravitational acceleration is 9.80665 m/s\(^2\); i.e., 1 lb = 1 lbm (9.80665 m/s\(^2\)). (b) In terms of kilogram, 1 lbm = 0.45359237 kg.

B. Newton’s third law states that every action is matched by a reaction, and action and reaction are collinear, opposite in direction, and equal in magnitude.

C. (You need to draw a sketch.) In the formula \(\mathbf{M}_P = \vec{r} \times \mathbf{F} \) for computing the moment \(\mathbf{M}_P \) about point \(P \), the vector \(\vec{r} \) is a displacement vector from the moment center \(P \) to any (convenient) point (e.g., point \(A \)) on the line of action of \(\mathbf{F} \).

D. (You need to draw a sketch.) In the formula \(M_{BC} = \lambda_{BC} \cdot (\vec{r} \times \mathbf{F}) \) for computing the moment \(M_{BC} \) about axis \(BC \) of a force \(\mathbf{F} \) acting at point \(A \), the vector \(\lambda_{BC} \) is a unit vector pointing from point \(B \) toward point \(C \) on the axis \(BC \), while the vector \(\vec{r} \) is a displacement vector from any (convenient) point (e.g., point \(B \)) on the axis \(BC \) to any (convenient) point (e.g., point \(A \)) on the line of action of \(\mathbf{F} \).