1. (30%) The weights of collars A and B are $W_A = 75 \text{ lb}$ and $W_B = 90 \text{ lb}$, respectively. If the effect of friction is negligible and equilibrium of the system as shown exists, determine (a) the tension T_{AB} in the connecting cable AB, (b) the reaction A exerted on collar A by the rod, (c) the reaction B exerted on collar B by the rod, (d) the magnitude of the applied force P.

![Fig. P1](image1) ![Fig. P2](image2) ![Fig. P3 A, B, C](image3)

2. (30%) A 48-N force F acts at the end D of a pipeline as shown. Determine (a) the moment M_A of the force F about the joint at A, (b) the moment M_{AB} of F about the axis of the pipe AB, (c) whether the action of F tends to tighten or loosen the joint at A where the threads are right-handed, (d) the shortest distance d_{s1} between point A and the line of action of F, (e) the shortest distance d_{s2} between the x axis and the line of action of F.

3. The system shown is in equilibrium, and the tension in the cable CD is known to be 288 lb. **Circle on this test sheet** the nearest item for each of the following:

 A. (5%) The tension in the cable CE is
 - (a) 75 lb.
 - (b) 150 lb.
 - (c) 225 lb.
 - (d) 300 lb.
 - (e) 375 lb.
 - (f) 450 lb.
 - (g) 525 lb.

 B. (5%) The weight of cart B is
 - (a) 875 lb.
 - (b) 750 lb.
 - (c) 625 lb.
 - (d) 500 lb.
 - (e) 375 lb.
 - (f) 250 lb.
 - (g) 125 lb.

 C. (5%) The weight of block A is
 - (a) 702 lb.
 - (b) 1053 lb.
 - (c) 1228 lb.
 - (d) 1404 lb
 - (e) 1580 lb.
 - (f) 1755 lb.
 - (g) 2106 lb.

 D. (5%) The critical load for a cantilevered column is $P_{cr} = (\pi^2 EI)/(4L^2)$. For $E = 20 \times 10^6 \text{ lb/in}^2$, $I = 1.5 \times 10^3 \text{ mm}^4$, $L = 3.5 \text{ ft}$, and $1 \text{ lbm} = 0.4536 \text{ kg}$, the largest mass m (in kg) of a block which may be placed on the top of the column without causing the column to buckle is
 - (a) 45.7 kg.
 - (b) 43.2 kg.
 - (c) 40.9 kg.
 - (d) 38.8 kg.
 - (e) 36.8 kg.
 - (f) 35.0 kg.
 - (g) 33.3 kg.

 A. (5%) Describe the **rigid-body principle**.

 B. (5%) Define the vectors $\mathbf{\lambda}_{BC}$ and \mathbf{r} in the formula $M_{BC} = \mathbf{\lambda}_{BC} \cdot (\mathbf{r} \times \mathbf{F})$ for computing the moment of a force \mathbf{F} about the axis BC.

 C. (5%) Describe **Varignon’s theorem**.

 D. (5%) The moment of a force \mathbf{F} about a point P is actually the same as the moment of this force \mathbf{F} about a specific axis. Describe the **location** and the **orientation** of this **specific axis**.