1. Give a brief summary of the laws of dry friction. (2)

2. The 30-lb block A and the 25-lb block B are initially at rest as shown, where \(\mu_s \) is 0.2 between all surfaces of contact. If the applied force \(P \) causes block A to have an impending motion down the incline, determine its magnitude \(P \). (8)

2. FBD for block B (2)

\[\pm \Sigma F_x = 0 : -\frac{4}{5} N_1 - \frac{3}{5} (0.2 N_1) + N_2 = 0 \]

\[+\uparrow \Sigma F_y = 0 : \frac{3}{5} N_1 - \frac{4}{5} (0.2 N_1) - 0.2 N_2 - 25 = 0 \]

\[N_1 = 97.65625 \text{ lb} \quad N_2 = 89.84375 \text{ lb} \ (2) \]

FBD for block A (2)

\[\pm \Sigma F_x = 0 : \frac{3}{5} N_3 - \frac{4}{5} (0.2 N_3) + \frac{4}{5} P - N_2 = 0 \]

\[+\uparrow \Sigma F_y = 0 : \frac{4}{5} N_3 + \frac{3}{5} (0.2 N_3) - \frac{3}{5} P + 0.2 N_2 - 30 = 0 \]

\[N_3 = 63.53125 \text{ lb} \quad P = 77.3625 \text{ lb} \]

\[P = 77.4 \text{ lb} \ (2) \]