Suppose \(f \) is a function such that \(f \) exists at some point \(P \). If you zoom in on the graph, the curve appears more and more like the tangent line to \(f \) at \(P \).
This is why you've had to do so many "find the equation for the tangent line to the given point" problems!

Therefore, it makes sense to approximate a function with its tangent line at \(P \) (at a point \(P \)).

That is, the curve approaches the tangent line that is differentiable at a point \(P \) is one of the properties of a function that is differentiable on smaller scales - it is the basis of linear approximations.

This idea - that smooth curves (i.e., curves without corners) appear straighter on smaller scales - is the basis of linear approximations.
\(\langle x, 0 \rangle \) is the same thing!

\[(v - x)(v, f) = (v, f - h) \]

So the equation of the tangent line is

\[(v, f)' \text{, the slope of the line tangent to the curve at point } f \]

At a given point, the following: At a given point.

Remarks: Compare this definition to the following: At a given point.

For \(x \) in \(I \)

\[(v - x)(v, f) + (v, f)' = (x, f)' \]

Linear approximation to \(f \) **as the linear function**

Definition

Suppose \(f \) **is differentiable on an interval** \(I \) **containing the point** \(a \). The

\[(v, f)' \text{ is the same thing!} \]
\[
\frac{4}{I} + \frac{x}{I} = (1 - x) \frac{4}{I} + \frac{2}{I} = (x)_f
\]

\[
\frac{4}{I} = (v)_f, \quad \frac{2}{I} = (v)_f, \quad \frac{2(1 + x)}{I} = (x)_f
\]

Solution: First compute

Then use the linear approximation to estimate

\[
(1.1, 1.1) \approx (v)_f(1.1) + (v)_f = (x)_f
\]

Approximation to

Write the equation of the line that represents the linear approximation to

Exercise
\[0.5238 \times \frac{0.5238}{0.5238 - 0.5238} = 100 = 0.23\% . \]

Note that \(f(1.1) = 0.5238 \), so the error in this estimation is

\[T(1.1) \approx f(T(1.1)) \]

Because \(x = 1.1 \) is near \(a = 1 \), we can estimate \(f(T(1.1)) \) using

Solution (continued):
Exercise

(a) The linear approximation to \(f(x) = \sqrt{1 + x} \) at the point \(x = 0 \) is (choose one):

- \(A. \quad L(x) = 1 \)
- \(B. \quad L(x) = x \quad (\text{choose one:} \quad f(0) = 1 + \frac{1}{2}(1 + 0.5) \quad \text{or} \quad f(0) = 1 + \frac{1}{2}(1 - 0.5)) \)
- \(C. \quad L(x) = x + \frac{1}{2} \)
- \(D. \quad L(x) = 1 - \frac{x}{2} \)

(b) What is an approximation for \(f(0.1) \)?

\[f(0.1) = \frac{1}{2} \sqrt{1 + 0.1} \]

\[\approx 1 + \frac{1}{2}(0.1) \]

\[1.05 \]

\[1.05 \]
\[x \nabla (v) f \approx h \nabla \quad \iff \quad (v - x)(v) f \approx (v)f - (x)f \]

When rewritten,

\[(v - x)(v) f + (v)f \approx (x)f \]

is fixed and \(x \) is a nearby point:

Our linear approximation \(L(x)f \) is used to approximate \((x)f \) when \(a \).
\(I, \text{ is approximately}\)

\[x \nabla (x), f \]

\(\text{the value of } f \text{ between two points } a \text{ and } a + \Delta x \in J \text{ containing the point } a, \text{ then the} \)

\[(\alpha, f) \approx \frac{x \nabla}{\Delta x} \]

\[x \nabla (\alpha), f \approx \Delta x \]

This is another way to say that \((\alpha), f \) is the rate of change of \(y \) with respect to \(x \).

A change in \(y \) can be approximated by the corresponding change in \(x \).

The case for these slices was done by Durbin-Stenberg, later extended to higher dimensions.
\[dy \approx y \Delta \]

Changes from \(a \) to \(a + \Delta x \) (called the differential, \(dy \)).

The change in the linear approximation \(y = f(x) \) as \(x \) changes from \(a \) to \(a + \Delta x \) (which we call \(y \Delta \)).

The change in the function \(y = f(x) \) as \(x \) changes from \(a \) to \(a + \Delta x \).

We now have two different, but related quantities:
\[\left(\mathbf{x} \times \nabla + a \right) f = \mathbf{h} \]

and this is:

\[\nabla = \nabla \mathbf{h} \]

\[x \nabla (v), f = \]

\[(v - a)(v), f + (v) f \] - \[(v - x \nabla + a)(v), f + (v) f \] =

\[(v) I - (x \nabla + a) I = X \nabla \]

The linear approximation change is:

\[(v) f - (x \nabla + a) f = \mathbf{h} \nabla \]

The function change is exactly:

\[\Delta x \nabla + a \] to \[a \to x \nabla + a \]
We define the differentials dx and dy to distinguish between the change in the function (Δy) and the change in the linear approximation (ΔL):

- dy is the change in the linear approximation, which is $\Delta L = f'(a) \Delta x$.
- dx is simply the change in x, i.e., Δx.

So:

\[
\frac{dy}{dx} = f'(a) \quad (\text{at } x = a)
\]
The use of differentials is critical as we approach integration.

\[(x) - (x \Delta x + x) = \Delta x \]

\[\Delta x = \Delta f = f(x) \]

\[(x) \Delta x - (x \Delta x + x) \Delta x = \Delta x \]

\[\Delta x = f(x) \]

The corresponding change in \((x)\) is approximated by the differential \(dx\).

A small change in \(x\) is denoted by the differential \(dx\).

\[\int \Delta x = \int f(x) \Delta x \]

Let \(f \) be differentiable on an interval containing \(x \).

Definition
This means as \(x \) increases by 0.1, \(y \) decreases by 1.1.

\[
\frac{\Delta x}{\Delta y} = \frac{0.1}{1.1} = \frac{(x_2 - x_1)(0.1)}{1 - 3x_2} = hp
\]

For example, if \(x \) increases from 2 to 2.1, then \(dx = 0.1 \) and

\[
\Delta x = 0.1
\]

The change of \(p \) in \(y \) is

A small change in the variable produces an approximate change in the variable, so

\[
xp(x)(y_2 - y_1) = hp
\]

Solution: Given a small change \(dx \)

\[
[xp(x), f = hp]
\]

Use the notation of differentials to approximate the
3. (7 pts ea) Let $f(x) = \ln x - \sin(2 - x)$.

(a) Write the equation for the linear approximation to $f(x)$ at $x = 2$.

(b) Use your answer to (a) to approximate $f(1)$.

(c) Below is the graph of $f(x)$, drawn at the website desmos.com/calculator. On the same axis, draw your tangent line. Label both $f(1)$ and your approximation from part (b).
3. (7 pts ea) Let \(f(x) = \ln x + \sin(2-x) \).

(a) Write the equation for the linear approximation to \(f(x) \) at \(x = 2 \).

\[
\Delta y = f'(a)(x-a) = f(a) - f(2)
\]

\[
L(x) = f(a) + f'(a)(x-a)
\]

\[
L(x) = \ln 2 - \frac{1}{2} (x-2)
\]

\[
dy = L(a+\Delta x) - L(a)
\]

(b) Use your answer to (a) to approximate \(f(1) \).

\[
\Delta x = x - a = d x
\]

\[
f(1) \approx L(1) = \ln 2 - \frac{1}{2} (1-2) = \ln 2 + \frac{1}{2}
\]

\[
\Rightarrow dy = L(1) - \ln 2
\]

\[
= \frac{1}{2}
\]

(c) Below is the graph of \(f(x) \), drawn at the website desmos.com/calculator. On the same axis, draw your tangent line. Label both \(f(1) \) and your approximation from part (b).
1. (3 pts ea) Let \(g(x) = \ln(1 + x) \).

(a) Write the equation for the linear approximation to \(g(x) \) at \(x = 0 \).

(b) Use your answer to (a) to approximate \(g(0.9) \).

(c) Below is the graph of \(g(x) \), drawn at the website desmos.com/calculator. On the same axis, draw your tangent line. Label both \(g(0.9) \) and your approximation from part (b).