The Role of Uninformed Investors in an Optimal IPO Mechanism

Alexey Malakhov*

January 2007

Abstract

This paper explores optimal ways for a firm to sell its initial public offering (IPO) to a mix of informed and uninformed investors through an intermediary. I focus on the leverage that uninformed investors give to the seller, concluding that higher revenues are achieved with higher numbers of uninformed investors participating in an IPO. I argue that the intermediary serves as the only credible provider of information about uninformed investors’ realized demand to informed investors. This increases the issuer’s expected revenue, and also provides a rationale for substantial payments from the seller to the intermediary.

JEL Classification: G24

Keywords: IPO, Uninformed Investors, Optimal Mechanism

*Sam M. Walton College of Business, The University of Arkansas, Fayetteville, AR 72701-1201, USA. Email: malakhov@walton.uark.edu.

I would like to express my sincere gratitude to Ravi Jagannathan for his encouragement on the topic and insightful comments and to Rakesh Vohra for his invaluable help and support. I would also like to thank Ulf Axelsson, Sandeep Baliga, Alexander Butler, Peter Eso, Michael Fishman, Paolo Fulghieri, Peter Klibanoff, Alessandro Pavan, Jörg Rocholl, Michael Schwarz, Ann Sherman, Asher Wolinsky, and seminar participants at Northwestern, Tulane, and UNC-Chapel Hill for their helpful comments.
1 Introduction

Consider a firm going public for the first time. It has some information about its products and technology and how they compare to competition. However, it possesses neither precise information about financial conditions, nor detailed information about competitors, as well as the product market. Therefore, the firm does not know the stock price that the market is willing to bear at the time of the initial public offering (IPO).

There are two kinds of potential IPO investors. The first kind, associated with financial companies, may have information that the issuing firm does not. That could be, for example, information about competitors, future regulatory reforms, and the general conditions of the economy and financial markets. These types of information allow them to better assess the long-term value of the firm, resulting in asymmetric information in the IPO process. However, these informed investors may have neither interest nor cash to purchase the entire IPO. The second type of investors are uninformed, say private individuals. Collectively, uninformed investors have sufficient funds to purchase the entire offering, but may be unwilling to participate due to adverse selection problem, i.e. they fear that they might have access to only low profit or unprofitable offerings.

The importance of informed investors is clear. They hold pivotal information about the value of the IPO, and their participation in the IPO serves as a credible "certification" to the uninformed investors that the IPO is a fair deal.

The objective of this paper is to highlight the role of uninformed investors as drivers of an information extracting IPO mechanism. Its main contribution is to consider uninformed investor’s profit as a benchmark for informed investor’s profit. Naturally, informed investors must profit no less than uninformed investors, since otherwise they can choose not to reveal their information, and participate in the IPO process as uninformed investors. Hence, uninformed investors play an important role as holders of the outside option for informed investors. This provides an endogenous incentive constraint for informed investors, that leads to limitations on informational surplus extraction from informed investors. I argue that the seller’s potential to extract the surplus from informed investors increases with the number of uninformed investors participating in the IPO. This explains why the issuer must rely on an investment bank as an intermediary to sell the shares, since the issuer does not have direct
I explore the effectiveness of information extraction from informed investors in the framework of optimal mechanism design under the assumption of collusion among informed investors.¹ I restrict attention to uniform price mechanisms, since IPO regulations in many countries require that a security should be offered to all investors at the same price. For example, in the U.S., the National Association of Securities Dealers (NASD) Rules of Fair Practice stipulate that a fixed offer price should be established and maintained over the offering period. The implementation of the optimal uniform price mechanism can be described as follows. First, an intermediary solicits information about IPO quality from informed investors, simultaneously announcing the allocation and price schedule for reported values. Then the IPO shares are allocated and the price is set according to the announced schedule and information received from informed investors. No shares are allocated if no information is revealed.

The important feature of the mechanism in this paper is that it is ex post individually rational, and that it fully reveals the information about the IPO value. This is important since it guarantees fair pricing for uninformed investors, and completely resolves the uncertainty in the aftermarket, which facilitates a robust aftermarket without the handicap of asymmetric information.

The main results of this paper are as follows.

First, I argue that the seller’s potential to extract the surplus from informed investors increases with the number of uninformed investors participating in the IPO. In the uniform price mechanism, an uninformed investor’s profit serves as an outside option for informed investors, which limits the seller’s information extraction efforts. The higher the level of participation of uninformed investors, the lower each uninformed investor’s profit. This results in a lower value of the outside option for informed investors. Hence the seller achieves higher revenues with larger numbers of uninformed investors participating in an IPO.

Second, I consider a continuous information structure that allows deriving comparative statics with respect to the full range of potential IPO values. It is optimal to bunch allocations on both upper and lower ends of possible valuations, i.e. to allocate 100% shares

¹This assumption highlights the difficulty of information extraction from informed investors.
of the most underpriced IPOs to informed investors and to allocate as much as possible of the least profitable issues to uninformed investors. This highlights the fact that distributing the entire IPO to the informed investors is a robust outcome for a substantial range of high-valued IPOs, and that uninformed investors’ participation in the IPO process does not guarantee them positive allocations. However, the fraction of valuations, for which uninformed investors are excluded, declines as the level of interest from uninformed investors increases, which means that higher levels of participation by uninformed investors lead to higher probabilities of positive allocations to uninformed investors.

Third, I provide new insights about the role of the intermediary in the IPO process by arguing that the intermediary serves as the only credible provider of information about uninformed investors’ realized demand to informed investors. This increases the issuer’s expected revenue, and also provides a rationale for substantial payments from the seller to the intermediary.

Finally, I propose empirical tests of the model that allow documentation of reduced underpricing and reduced informed investors allocations as a result of higher uninformed investors participation.

The rest of this paper is organized as follows. The next section provides the connection to the existing IPO literature. The model is introduced in Section 3. Section 4 describes a motivating example. Analysis of the optimal uniform price mechanism is performed in Section 5. Section 6 concludes.

2 Relation to Existing Literature

There has been extensive research into various pricing schemes under asymmetric information in the IPO process over the last fifteen years. The two most important papers in this stream are Rock (1986) and Benveniste and Spindt (1989). Both papers consider a group of potential investors of an IPO offering (usually large institutional investors) with superior information about the value of the IPO because of their private research and knowledge of market conditions.
Rock (1986) showed how underpricing can be a consequence of asymmetry of information in the posted price IPO mechanism. He argued that since uninformed investors are at an informational disadvantage compared to informed investors, they would end up with a disproportionately large share of bad deals. Thus they have to be compensated through an underpricing of IPOs, enabling them to break-even on average. The question of how IPO shares are to be allocated between informed and uninformed investors was not examined. It was assumed that all investors are rationed in the same proportion. Rock also did not consider the role of an intermediary, or concentrate on uninformed investors in the IPO process.

Benveniste and Spindt (1989) focused on the relationship between an intermediary and informed long term investors. In their paper individual allocations for the long term informed investors depend on their reports to the intermediary, which allows for partial information surplus extraction from informed investors. The IPO shares unsold to informed investors were sold to uninformed investors at the full-information price. Benveniste and Spindt argued that this mechanism resembled the IPO bookbuilding process. Underpricing was also one of the model’s results. Benveniste and Spindt also showed that IPO underpricing could be alleviated with a long term relationship between an investment banker and informed investors.

Since Benveniste and Spindt (1989) it has become common to interpret bookbuilding as a mechanism for extracting information from informed investors. This interpretation of information extraction and advantages of bookbuilding were further explored in Spatt and Srivastava (1991), Benveniste and Busaba (1997), Sherman (2000), Biais and Faugeron-Crouzet (2002), and Sherman (2005). Most recently, the information extraction view of bookbuilding was empirically supported in Cornelli and Goldreich (2001) and Cornelli and Goldreich (2003).

It is natural that a seller’s expected revenue in any mechanism depends on the effectiveness of information extraction from informed investors. Benveniste and Wilhelm (1990) studied the effects of uniform-price and uniform-allocations restrictions on relative costs of information extraction vs. adverse selection in IPO process. They emphasized that uniform-price restrictions lead to the loss of revenue in information extracting mechanisms, due to loss
of the seller’s discretion over one of the information extracting tools, as well as the fact that uninformed investors would be needlessly rewarded by underpricing, which was necessary for the information extraction from informed investors.

In this paper I study the effectiveness of information extraction in the framework of optimal mechanism design. I develop an IPO model with a continuous information structure, where potential IPO values belong to a bounded interval. I assume risk-neutral informed investors, who receive a perfect signal about the IPO value, and behave in a collusive way, i.e. that they disclose their information only together as a group. One of the objectives of this approach is to highlight the difficulties of seller’s revenue maximization in the absence of uninformed investors. I develop optimal IPO mechanisms that deal with the issue of asymmetric information in uniform price and discriminatory price settings. The intermediary plays a key role in the model in providing the seller with the access to the pool of uninformed investors, soliciting information about the IPO value from informed investors, and credibly providing information about uninformed investors’ demand to informed investors.

The optimal mechanism design approach has been applied to IPOs in Biais, Bossaerts, and Rochet (2002), Maksimovic and Pichler (2004) and Bennouri and Falconieri (2004).

Biais, Bossaerts, and Rochet (2002) developed an optimal IPO mechanism for a model where an intermediary and informed investors collude. In this paper I assume that the intermediary acts in the best interests of the seller, while informed investors collude.

Maksimovic and Pichler (2004) studied optimal IPO mechanisms under the assumption of a discrete information structure, and also considered the effect of allocation or participation constraints on IPO underpricing. One of the key conclusions in Maksimovic and Pichler (2004) was that an optimal IPO mechanism results in zero expected underpricing in the absence of constraints on investors’ returns and allocations. Maksimovic and Pichler (2004) interpreted underpricing as a result of exogenous constraints on investors’ returns and allocations.

Bennouri and Falconieri (2004) developed an optimal IPO mechanism in a model where risk averse informed investors receive independent signals about the IPO value, and the aftermarket value of the shares is the average of informed investors’ signals. They did not assume the uniform price constraint, but concluded that an optimal IPO mechanism
could be implemented through a uniform price offering. Bennouri and Falconieri (2004) also found that if informed investors are risk-neutral, the seller can implement a full extracting mechanism that allocates the entire issue to uninformed investors. Their uniform price optimality result relies on informed investors’ risk aversion to quantity, and on the Bayesian incentive compatibility nature of the mechanism, that uses the expected utility with respect to other informed investors’ signals. In this paper, I assume risk neutral investors, and develop mechanisms that do not require the use of Bayesian incentive compatibility, since all information in the model is communicated through the mechanism. Another important feature of this paper is that all mechanisms provide strictly positive participation incentives for all investors, while the full extracting mechanism with risk neutral informed investors in Bennouri and Falconieri (2004) presents a corner solution, in which informed investors do not receive any allocation in return to the provided information, and have no positive incentives to participate.

A common feature of the above papers is the lack of focus on uninformed investors as drivers of information extracting mechanisms, as well as the absence of guarantees that informed investors profit at least as much as uninformed investors. I introduce an endogenous incentive constraint for informed investors that requires that they receive at least as much profit as uninformed. This constraint provides intuition about why the issuer’s revenue depends on the number of uninformed investors participating in the IPO process. The endogenous nature of the above constraint differs from Benveniste and Wilhelm (1990) and Maksimovic and Pichler (2004) consideration of exogenous constraints and their adverse effects on the seller’s revenue. The use of a continuous information structure differs from a discrete information structure in Benveniste and Wilhelm (1990) and Maksimovic and Pichler (2004), and enables me to consider comparative statics of the region of IPO values for which the entire allocation goes to informed investors on the uninformed investors’ participation levels.

In this paper, I concentrate on the optimal uniform price mechanism, and find pricing and allocation implications that are consistent with the existing empirical IPO literature:

1) The amount of underpricing increases with the value of the IPO. This was first documented by Hanley (1993) as the partial adjustment phenomenon, and also confirmed by
Ljungqvist and Wilhelm (2002).

2) The positive relationship between IPO prices and informed investors’ allocations was identified in Ljungqvist and Wilhelm (2002) by findings of positive relationship between institutional allocations and price revisions.

3) The positive relationship of IPO profitability and informed investors’ allocations is consistent with Aggarwal, Prabhala, and Puri (2002) findings of the positive relationship between institutional allocations and day one IPO returns.

I also find new testable implications that both underpricing and informed investors allocations decrease in response to higher uninformed investors participation.

3 Model Description

I consider a model with an IPO seller, an intermediary and two groups of investors: informed and uninformed. A firm has a fixed quantity of shares to sell in a firm commitment IPO.\(^2\) The firm uses an intermediary, who sells the shares to two categories of investors: informed (i.e. large investment management firms, or professional investors), and uninformed (i.e. retail investors). I assume that the intermediary acts in the best interests of the seller. Without loss of generality the quantity of shares is normalized to 1. The market valuation of the shares, \(v\), is distributed over a bounded interval \([v, \bar{v}]\). There are \(N\) informed investors who know the realization of \(v\), and have sufficient funds to buy as much of the IPO as available if the offering price is less than \(v\). Each uninformed investor has available funds in the amount of \(m\). Without loss of generality assume \(m = 1\). Denote the total number of uninformed investors as \(\theta\), interpreting it as a measure of uninformed demand that may be willing to participate in an IPO. Assume that \(\theta\) is distributed over a bounded interval \([\hat{\theta}, \bar{\theta}]\), such that \(\theta > \bar{v}\), i.e. that uninformed investors have sufficient funds to buy the entire IPO at any valuation. All agents in the model are assumed to be risk neutral. The information structure of the model is as follows:

1) Probability distributions of \(v\) and \(\theta\), and the value of \(N\) are common knowledge. \(v\) and \(\theta\) are independent.

\(^2\)All of the IPO shares must be sold once the offering price has been set.
2) The firm with the IPO does not know realizations of v and θ.

3) The intermediary privately observes the realization of θ, but does not know the realization of v.

4) Each uninformed investor does not know realizations of v and θ.

5) Each informed investor privately observes the realization3 of v, but does not know the realization of θ.

6) Identities of all informed and uninformed investors are private information.

I assume that N informed agents collude,4 which precludes information extraction by simple cross-reporting, or in the style of Crémer and McLean (1988).

I attempt to solve the problem of maximizing the expected proceeds from sale in the framework of optimal mechanism design under various restrictions on the prices paid by informed and uninformed investors.

4 Motivating Example

The following example is useful because it provides a benchmark and highlights difficulties in the underlying mechanism design problem.

4.1 Preliminary Observation

The expected revenue from the sale, $E(R)$, can not exceed $E(v)$, since this is the value of an informed investor’s surplus. It is impossible to extract more than that without violating individual rationality or participation constraints.

3Notice that all informed investors have exactly the same valuation v in this model. This also could be interpreted as they all receive a perfectly precise signal about v.

4Here I assume a specific type of collusion in the spirit of an “exclusive club” - informed investors stick together as holders of exclusive information, and will receive equal allocations at the end. This implies that collusion in the distribution of shares is not allowed.
4.2 Motivating Example

As an illustration suppose \(v \sim U[0, 1] \), there is only one informed investor, and the following mechanism: the intermediary first announces a share-price schedule \(p(q) \), where \(q \) is the quantity (i.e. the number of shares) given to the informed investor, then the informed investor makes his choice of \(q \), which determines the price at which the remaining \(1 - q \) shares are sold to uninformed investors. So, informed and uninformed investors pay the same share price. Assume for now common knowledge of the identity of the informed investor.\(^5\)

As an example consider only schedules of the form

\[
p(q) = q^a, \quad 0 < a < 1.
\]

Then for any given \(v \), the informed investor solves the problem

\[
\max_q \{ q(v - q^a) \}.
\]

First order conditions give the solution since the objective function is concave:

\[
q^*(v) = \left(\frac{v}{a + 1} \right)^{\frac{1}{a}},
\]

\[
p^*(v) = \frac{v}{a + 1}.
\]

Uninformed investors always participate in this mechanism, since they obtain positive profit at any value of \(v \) because they pay the same price \(p^* \) as the informed investor. This means that the seller always sells all IPO shares at the price \(p^* \), and the total expected revenue is

\[
R = \int_0^1 \frac{v}{a + 1} dv = \frac{1}{2(a + 1)} \xrightarrow{a \to 0} \frac{1}{2} = E(v).
\]

Notice that the above mechanism is a particular case of a direct revelation mechanism where the informed investor announces \(v \), and gets \(q^*(v) \) while making the payment \(q^*(v)p^*(v) \). Obviously it is incentive compatible, and it is ex post individually rational for everybody to participate in this mechanism.

The central idea of the above mechanism is that it is possible to force the informed investor to disclose his valuation using a very small allocation of shares, while leaving the

\(^5\)This assumption will be relaxed later.
informed investor with a positive profit. The high level of seller’s revenue is then achieved by selling the rest of the IPO issue to uninformed investors at the price chosen by the informed investor, which guarantees them a profit. Uninformed investors may be viewed as a powerful tool for the seller to extract informational surplus from informed investors.

There are some implausible implications of the above mechanism. Let π_I be the profit of the informed investor, and π_U be the profit of an uninformed investor. Then

$$\pi_I = q^*(v) (v - p^*(v)), \quad (5)$$

$$\pi_U = \frac{1 - q^*(v)}{\theta} (v - p^*(v)). \quad (6)$$

Notice that $\pi_I < \pi_U$ for some values of v and θ as $\theta \to 0$. First, it may seem “unfair” to the informed investor. Second, this may reduce the incentives for the informed investor to collect information. Third, the informed investor may choose to represent himself as an uninformed investor.

5 Uniform Price Optimal Mechanism

Consider the optimal mechanism design problem of an intermediary dealing with two groups of investors. The revelation principle allows me to restrict attention to a direct revelation mechanism (DRM) in the style of Myerson (1981). Informed investors report their valuation v to the intermediary, who then allocates $q(v)$ shares to all informed investors and gets a payment of $p(v)$. This is equivalent to allocating $\frac{q(v)}{N}$ shares to each informed investor and getting a payment of $\frac{p(v)}{N}$. The remaining shares are divided equally amongst the uninformed investors. No shares are allocated if informed investors do not disclose any valuation. Restricting attention to the class of mechanisms where informed and uninformed investors pay the same price, I conclude that the price per share, $p_s(v)$, for uninformed investors would be $\frac{p(v)}{q(v)}$ and they would receive a total allocation of $(1 - q(v))$. Since the total number of shares is normalized to 1, the revenue from the IPO under the above DRM would be

$$R = p_s(v) = \frac{p(v)}{q(v)}. \quad (7)$$

The DRM has to satisfy incentive compatibility and participation constraints for informed
investors, i.e.

\[vq(v) - p(v) \geq vq(\hat{v}) - p(\hat{v}) \quad \forall v, \hat{v}, \quad (IC-1_I) \]

\[vq(v) - p(v) \geq 0. \quad (IR_I) \]

Notice that any informed investor can misrepresent himself as an uninformed investor in this mechanism if it gives him a higher payoff. Hence it is necessary to introduce an additional incentive compatibility constraint\(^6\) so that informed investors would truthfully reveal that fact that they know the value of \(v\), which means that each informed investor has to get at least as many shares as an uninformed investor:\(^7\)

\[\frac{q(v)}{N} \geq \frac{1 - q(v)}{\theta}, \quad (IC-2_I) \]

which is equivalent to

\[q(v) \geq \frac{N}{N + \theta}. \quad (IC-2_I) \]

Notice that there is no need for an uninformed investor’s participation constraint, since \((IR_I)\) already takes care of it.\(^8\) Finally there is an obvious feasibility constraint

\[0 \leq q(v) \leq 1. \quad (FC) \]

Thus the intermediary’s DRM design problem can be written as follows

\[
\max_{p(v),q(v)} \left\{ E \left(\frac{p(v)}{q(v)} \right) \right\}
\]

\[P_{up} \]

such that \((IC-1_I), (IR_I), (IC-2_I),\) and \((FC)\) are satisfied.

\(^6\)I.e. guarantee that informed investors receive higher payoff than uninformed investors for all values of \(v\).
\(^7\)Here the assumption that all uninformed investors have the same amount of funds has bite - it forces an informed investor to conform to the uninformed crowd, and submit the same quantity order. This assumption could be relaxed with the rationing rule when all uninformed investors are allocated the same amount no matter what their quantity orders were.

Here the marginal loss of value from participating as an uninformed investor is not accounted for, since it only changes \(N\) to \(N + 1\), which hardly matters on a conceptual level.

\(^8\)Indeed, both informed and uninformed investors pay the same price, and informed investors always participate, hence uninformed investors cannot lose.
Theorem 1 The problem \((P_{up})\) with constraints \((IC-1_I), (IR_I), (IC-2'_I), (FC)\) is equivalent to
\[
\max_{q(v)} \left\{ E(v) - E \left(\frac{\int_0^v q(x)dx}{q(v)} \right) \right\}
\]
\((P'_{up})\)
where \(q(v)\) is a non-decreasing function subject to
\[
\begin{align*}
q(v) &= \frac{N}{N+\theta}, \quad (IC-2''_I) \\
q(\bar{v}) &\leq 1. \quad (FC')
\end{align*}
\]

Proof. The proof follows the standard logic in Myerson (1981). Let \(U(v) = vq(v) - p(v)\). Rewriting \((IC-1_I)\) in terms of \(\hat{v}\) I have
\[
U(\hat{v}) = \hat{v}q(\hat{v}) - p(\hat{v}) \geq \hat{v}q(v) - p(v) \quad \forall v, \hat{v}. \tag{8}
\]
Combining \((IC-1_I)\) and \((8)\) gives
\[
(v - \hat{v})q(\hat{v}) \leq U(v) - U(\hat{v}) \leq (v - \hat{v})q(v) \tag{9}
\]
which implies that \(q(v)\) and \(U(v)\) are non-decreasing. The monotonicity of \(q(v)\) implies that it is a.e. continuous. Thus rewriting \((9)\) as
\[
q(\hat{v}) \leq \frac{U(v) - U(\hat{v})}{v - \hat{v}} \leq q(v) \tag{10}
\]
and taking limits as \(\hat{v} \to v\) at points where \(q(v)\) is continuous, I conclude that \(U'(v) = q(v)\) a.e., which in turn yields absolute continuity of \(U(v)\), and hence
\[
U(v) = U(\underline{v}) + \int_\underline{v}^v q(x)dx \tag{11}
\]
and
\[
p(v) = vq(v) - \int_\underline{v}^v q(x)dx - U(\underline{v}). \tag{12}
\]
Recalling that \(U(v)\) is always non-negative and non-decreasing it is easy to see that in an optimal mechanism \(U(\underline{v}) = 0\), hence \(p(v) = vq(v) - \int_\underline{v}^v q(x)dx\) and
\[
\frac{p(v)}{q(v)} = v - \frac{\int_\underline{v}^v q(x)dx}{q(v)}. \tag{13}
\]
Finally, recalling that \(q(v) \) is non-decreasing in conjunction with (IC-2\(_I\)) yields

\[
q(v) = \frac{N}{N + \theta}
\]

(14)

which along with (IC-2\(_I\)) completes the proof. ■

Corollary 1

\[
E(R) \leq E(v) - \frac{N}{N + \theta} E(v - \bar{v}) < E(v)
\]

(15)

for any mechanism which satisfies the above restrictions.

Proof. From Theorem 1, \(\frac{N}{N + \theta} \leq q(v) \leq 1 \). So

\[
\frac{\int_v^\infty q(x)dx}{q(v)} \geq \frac{N}{N + \theta} \frac{v - \bar{v}}{q(v)} \geq \frac{N}{N + \theta}(v - \bar{v}).
\]

(16)

This implies

\[
E(v) - E\left(\frac{\int_v^\infty q(x)dx}{q(v)}\right) \leq E(v) - \frac{N}{N + \theta} E(v - \bar{v}).
\]

(17)

Corollary 1 highlights the fact that the seller’s leverage to extract informational surplus from informed investors depends on participation of uninformed investors in the uniform price mechanism. It is possible to interpret \(q(v) = \frac{N}{N + \theta} \) as the value of the outside option to informed investors provided by the participation of uninformed investors in the IPO process.

The seller can achieve higher revenues with larger numbers of uninformed investors participating in an IPO by lowering the value of the outside option for informed investors. The seller can also achieve higher revenues with lower numbers of informed investors participating in an IPO, which lower the value of the informed investors’ outside option. Notice that higher numbers of informed investors do not result in better information about the IPO value in this model, since each informed investor observes the exact IPO value \(v \).

5.1 The Role of the Intermediary - (IC-2\(_I\)) Revisited

Here I highlight the role of the intermediary in the above mechanism as the only agent in the IPO process who can credibly facilitate information exchange between the seller and informed investors. The intermediary providing the information to informed investors about
the realized level of the uninformed investors’ demand, \(\theta \), results in a higher expected revenue for the seller. This follows from further considering the incentive constraint (IC-2\(_t\)).

(IC-2\(_t\)) states that that each informed investor is awarded at least as many shares as an uninformed investor, i.e.

\[
\frac{q(v)}{N} \geq \frac{1 - q(v)}{\theta}.
\]

(18)

Unfortunately, informed investors do not know the exact value of \(\theta \). Assume for the moment they make their decisions based upon the expected value of surplus for an uninformed investor w.r.t. \(\theta \). Technically this means taking an expectation w.r.t. \(\theta \) of the right hand side in (18), so in fact inequality (18) should read

\[
\frac{1}{N} q(v) \geq E\left(\frac{1}{\theta}\right) (1 - q(v)).
\]

(19)

Since \(\frac{1}{\theta} \) is a convex function, by Jensen’s inequality \(E\left(\frac{1}{\theta}\right) \geq \frac{1}{E(\theta)} \). This means that informed investors in the absence of credible information about \(\theta \) would overestimate the value of their outside option of misrepresenting themselves as uninformed investors. This would result in the lower payoff for the seller. The seller would benefit if informed investors were provided with the information about \(\theta \).

The only agent in the model who knows \(\theta \) (i.e. the intermediary) can not truthfully and credibly signal its realization in a one-shot game, even though the intermediary has a perfect signalling tool in announcing the starting point of the allocation schedule \(q(v) \) by (IC-2\(_m\)), which gives \(\theta = \frac{N}{q(v)} - N \). Indeed, the intermediary would be tempted to announce high values of \(\theta \) to get a higher revenue even if he actually observed low values of \(\theta \). So the equilibrium pure strategies for the intermediary and informed investors would be to play \(E\left(\frac{1}{\theta}\right) \) instead of \(\theta \), and hence the prior assumption about informed investors’ strategies was correct.

However it is possible for the intermediary to credibly provide information about \(\theta \) to informed investors in a repeated game. In this case the intermediary lowers the expected value of the outside option to informed investors, generating extra expected revenue by signalling \(\theta \) to informed investors, and thus a simple trigger strategy on the part of informed investors would enforce the intermediary’s truth-telling.\(^9\)

\(^9\)This assumes that informed investors can ex-post verify \(\theta \) from observing ex-post uninformed allocations
The expected gains to the seller are not easy to quantify, since the seller’s expected revenue also includes θ. Numerical solution for the case of $v \sim U[0,1]$, $N = 2$, and $\theta \sim U[1,100]$ gives $E(R) = .27$ with no signalling, and $E(R) = .29$ with costless signalling, demonstrating positive gains from signalling θ by the intermediary.

It is important to mention that not all of the above expected revenue is transferable to the seller because the intermediary must keep at least a part of this revenue to sustain a truth-telling trigger strategy, because it depends on the expected profits the intermediary anticipates in the future. Hence substantial payments must be made to the intermediary in order to guarantee his effectiveness in disclosing θ to informed investors.

5.2 Numerical Solution

Solving (P_{up}) for $q(v)$ in closed form is difficult. Here I demonstrate a numerical solution for the optimal allocation schedule for informed investors, $q(v)$, and the optimal underpricing schedule, $v - p_v(v)$, as well as seller’s expected revenue, $E(R)$, for different values of the outside option $q(0) = \frac{N}{N+\theta}$ as given by uninformed investors’ participation through the constraint (IC-2') in the case of the uniform distribution on $[0,1]$.

Figure 1 shows typical informed investors’ allocation and underpricing schedules for low levels of uninformed investors’ participation, which correspond to high values of the informed investors’ outside option $q(0)$. Figure 2 shows typical allocation and underpricing schedules for high levels of interest on the part of uninformed investors, which correspond to low values of the informed investors’ outside option $q(0)$.

and the rationing rule, which naturally holds under the structure imposed on uninformed investors.

\footnote{Seller’s profits depend on the value of $q(0) = \frac{N}{N+\theta}$.}
Corollary 1 along with the numerical solution illustrated in Figures 1 and 2 provide a set of empirical implications. Some of the implications are consistent with the existing empirical IPO literature, while the insight about the role of uniformed investors provides new testable empirical implications. These new implications are captured by the dynamics between Figures 1 and 2, and are summarized below.

5.3 Empirical Implications

Corollary 1 along with the numerical solution illustrated in Figures 1 and 2 provide a set of empirical implications. Some of the implications are consistent with the existing empirical IPO literature, while the insight about the role of uniformed investors provides new testable empirical implications. These new implications are captured by the dynamics between Figures 1 and 2, and are summarized below.
First, the underpricing decreases with the increased level of participation of uninformed investors θ. This is demonstrated by the right panel dynamics between Figures 1 and 2.

Second, the total allocation to informed investors decreases with the increased level of participation by uninformed investors θ, as shown by the left panel dynamics between Figures 1 and 2. Notice that this effect is fundamentally different from a similar implication produced by a simple pro-rate allocation rule. The optimal IPO mechanism implies reduced allocations to informed investors as a result of the increased absolute level of the demand by uninformed investors, regardless of the size of the informed investors’ demand. On the other hand, the pro-rate rule implies changes in allocations to informed investors only in response to changes in the relative demand by uninformed investors compared to the demand by informed investors.

Third, it is optimal to bunch allocations on both upper and lower ends of possible valuations, i.e. to allocate all of the most underpriced issues to informed investors and to allocate as much as possible without violating (IC-2$_I$) constraint of the least profitable issues to uninformed investors. However, the fraction of bunched allocations declines along with the value of informed investors outside option $q(0) = \frac{N}{N+\theta}$.

Other implications of this paper’s model that are consistent with the existing empirical IPO literature are as follows.

First, both the IPO price and the level of underpricing increase with the IPO valuation, v, which is consistent with the partial adjustment phenomenon, first documented by Hanley (1993), and also confirmed by Ljungqvist and Wilhelm (2002).

Second, optimal IPO prices and informed investors’ allocations are positively related, which is consistent with Ljungqvist and Wilhelm (2002) findings of positive relationship between institutional allocations and price revisions during the bookbuilding process.

Third, it is optimal to give larger allocations of the most underpriced issues to informed investors, and to give larger allocations of the least underpriced issues to uninformed investors. This is consistent with a pattern of biased allocations, when a few “privileged” informed investors receive a disproportionately large fraction of the most profitable high value issues. This was confirmed in Aggarwal, Prabhala, and Puri (2002) by findings of the positive relationship between institutional allocations and day one IPO returns.
5.4 Empirical Tests

Here I propose empirical tests of the first two new implications of the model. These tests allow the capture of the predicted effects by controlling for the effects that have been documented in the literature. Notice that all the currently documented effects rely on the variation in the underlying IPO valuation, v, while this paper’s implications with respect to the level of participation by uninformed investors hold for a fixed level of v. That is why it is necessary to introduce a control variable that captures variation in v. Since it is also important to capture not the absolute value of the IPO valuation v, but its relative value with respect to the underlying ex ante uncertainty prior to the IPO, I propose to use the difference between the final IPO price and the middle point of the initial IPO price range as proxy for v. The full list of the variables required for empirical tests follows:

- P_m is the middle point of the initial IPO price range,
- P_{IPO} is the final IPO price,
- P_{close} is the closing price after the first trading day,
- QD_U is the total number of shares demanded by uninformed investors,
- QD_I is the total number of shares demanded by informed investors,
- QD is the total number of IPO shares demanded,
- Q_U is the total number of shares allocated to uninformed investors,
- Q_I is the total number of shares allocated to informed investors,
- Q is the total number of IPO shares sold.

Given the availability of the above data, it would be possible to test the first implication that underpricing decreases with the increased level of participation of uninformed investors with the following regression:

$$ (P_{close} - P_{IPO}) = \alpha + \beta \frac{QD_U}{Q} + \delta (P_{IPO} - P_m) + \varepsilon. $$

(20)

In the above equation (20), $\frac{QD_U}{Q}$ is a proxy for the level of interest by uninformed investors relative to the IPO size, and $P_{IPO} - P_m$ is a proxy for the relative value of the IPO with respect to the ex ante uncertainty. A significantly negative value of the β coefficient can be interpreted as evidence in support of the model’s first implication.
The second implication that the total allocation to informed investors decreases with the increased level of participation by uninformed investors could be tested with the following regression:

\[
\frac{Q_I}{Q} = \alpha + \beta \frac{QD_U}{Q} + \gamma \frac{QD_U}{QD} + \delta (P_{IPO} - P_m) + \varepsilon. \tag{21}
\]

In the equation (21), the additional variable \(\frac{QD_U}{QD} \) is a proxy for the fraction of interest by uninformed investors relative to the total demand. It controls for the effect of a simple pro-rate rule, which implies that \(\frac{Q_I}{Q} = 1 - \frac{QD_U}{QD} \). A significantly negative value of the \(\beta \) coefficient can be interpreted as evidence in support of the model’s second implication.

Unfortunately, it could be very hard to find suitable data for the above tests to yield significant results, since it would require a low correlation between the relative quality of IPOs and the level of uninformed investors’ demand. Although there have been a few recent papers\(^\text{11}\) that used demand and allocation data for European IPOs, such data has a high correlation between the relative quality of IPOs and the uninformed investors’ demand due to an active when-issued market for IPOs in Europe. American IPO data may have better potential, but it has been historically closely guarded by investment banks.

6 Summary and Conclusions

In this paper I develop the optimal uniform price mechanism to sell initial public offerings to a mix of informed and uninformed investors under the assumption that informed investors are better informed than the issuer. I focus on the seller’s leverage provided by uninformed investors in both types of mechanisms. I consider uninformed investor’s profit as a benchmark for informed investor’s profit. It gives an endogenous incentive constraint for informed investors, that provides limitations on informational surplus extraction from informed investors in uniform price mechanisms.

I consider a uniform price mechanism, since IPO regulations in many countries require that a security should be offered to all investors at the same price. The main implications of the optimal IPO mechanism are as follows.

First, the degree of surplus extraction from informed investors critically depends on the number of uninformed investors participating in an IPO. Higher numbers of uninformed investors participating in an IPO allow the issuer to achieve higher revenues.

Second, it is optimal to allocate 100% of the shares to informed investors over a substantial range of high-valued IPOs. This highlights the fact that excluding uninformed investors from the most underpriced IPOs is a robust outcome of the optimal IPO procedure.

Third, the intermediary increases the issuer's expected revenue by credibly providing information about uninformed investors’ realized demand to informed investors. This provides a rationale for substantial payments from the seller to the intermediary. The intermediary is also essential in providing the seller with the access to a pool of uninformed investors.

Finally, I propose empirical tests of the model that allow documentation of reduced underpricing and reduced informed investors allocations as a result of higher uninformed investors participation.

The level of underpricing in the uniform price mechanism may be quite substantial, which contradicts an argument in Ritter and Welch (2002) claiming that underpricing should be no more than a few percentage points in models with asymmetric information. That argument relies on a low marginal value of each informed investor’s information under assumptions of imperfect information held by informed investors, and the full revelation price being the aggregate of informed investors’ signals. This implies a relatively low compensation by underpricing for informed investors to reveal their information. My model assumes collusion among informed investors, like an “exclusive club” of all information holders. This leads to a high marginal value of the cumulative information held by the informed investors’ alliance, resulting in a high magnitude of underpricing required as a compensation for revealing that information.
References

