University of Arkansas Topology Seminar: 3/16/2017

Speaker: Samuel Lisi

Title: A computation of symplectic homology

Symplectic Homology is a Floer-type invariant for a certain class of non-compact symplectic manifolds that includes cotangent bundles and smooth affine algebraic varieties. In joint work with Luis Diogo, we have developed a method of computing Symplectic Homology for an affine algebraic variety in terms of the Gromov-Witten invariants of the associated projective variety.