1. (30%) The beam shown has a constant flexural rigidity EI. Using moment-area theorems, determine
 (a) the reaction forces A, B, and D at the three supports, (b) the slope θ_C and deflection y_C at C.

2. (30%) Using conjugate beam method, solve Problem 1.

3. (20%) The beam ABC of length $2L$ has a constant flexural rigidity EI and carries a moment M_0 at A and a distributed load with intensity w in the segment BC as shown, where $M_0 = 5wL^2 \bigotimes$. Circle on this test sheet the nearest item for each of the following:

 A. The reaction at B of the beam is
 (a) $\frac{51wL}{8}$, (b) $\frac{57wL}{8}$, (c) $\frac{63wL}{8}$, (d) $\frac{69wL}{8}$, (e) $\frac{75wL}{8}$, (f) $\frac{81wL}{8}$, (g) $\frac{87wL}{8}$.

 B. The deflection at A of the beam is
 (a) $\frac{125wL^3}{48EI}$, (b) $\frac{143wL^3}{48EI}$, (c) $\frac{61wL^3}{48EI}$, (d) $\frac{179wL^3}{48EI}$, (e) $\frac{197wL^3}{48EI}$, (f) $\frac{215wL^3}{48EI}$, (g) $\frac{233wL^3}{48EI}$.

 C. The slope at A of the beam is
 (a) $\frac{419wL^3}{48EI}$, (b) $\frac{389wL^3}{48EI}$, (c) $\frac{359wL^3}{48EI}$, (d) $\frac{329wL^3}{48EI}$, (e) $\frac{299wL^3}{48EI}$, (f) $\frac{269wL^3}{48EI}$, (g) $\frac{239wL^3}{48EI}$.

 D. The slope at B of the beam is
 (a) $\frac{77wL^3}{48EI}$, (b) $\frac{71wL^3}{48EI}$, (c) $\frac{65wL^3}{48EI}$, (d) $\frac{59wL^3}{48EI}$, (e) $\frac{53wL^3}{48EI}$, (f) $\frac{47wL^3}{48EI}$, (g) $\frac{41wL^3}{48EI}$.

4. (20%) Non-numerical problem.

 A. Let C and D be two points of a beam AB having a length L and a constant flexural rigidity EI, where D is to the right of C. Assume that this beam is simply supported at A and B and a concentrated force P acts at the midpoint of the beam. (a) Draw the deflected beam and θ_{DC}, t_{DC}, and t_{CD}; (b) describe how to compute θ_{DC} and t_{DC} according to the moment-area theorems.

 B. Describe the ten rules that guide one in using the conjugate beam method.