1. (30%) The weights of collars A and B are $W_A = 60 \text{ lb}$ and $W_B = 90 \text{ lb}$, respectively. If the effect of friction is negligible and equilibrium of the system as shown exists, determine (a) the tension T_{AB} in the connecting cable AB, (b) the reaction A exerted on the collar A by the rod, (c) the reaction B exerted on the collar B by the rod.

2. (30%) A 90-N force F acts at the end D of a pipeline as shown. Determine (a) the moment M_A of the force F about the joint at A, (b) the moment M_{AB} of F about the axis of the pipe AB, (c) whether the action of F tends to tighten or loosen the joint at A where the threads are right-handed, (d) the shortest distance d_{s1} between the point A and the line of action of F, (e) the shortest distance d_{s2} between the line containing AB and the line of action of F.

3. (20%) The tensions in the guy wires PA and PB, attached to a pole supporting a dish antenna as shown, are $T_{PA} = 510 \text{ N}$ and $T_{PB} = 600 \text{ N}$, respectively. Let the resultant of T_{PA} and T_{PB} at P be R and $R = R_x i + R_y j + R_z k$. Circle on this test sheet the correct or nearest item for each of the following:

A. The value of R_x is
 (a) 520 N. (b) 522 N. (c) 523 N. (d) 525 N. (e) 526 N.

B. The value of R_y is
 (a) –854 N. (b) –850 N. (c) –846 N. (d) –843 N. (e) –839 N.

C. The value of R_z is
 (a) 152.0 N. (b) 149.2 N. (c) 146.4 N. (d) 143.6 N. (e) 140.9 N.

D. The rate of flow of oil in a pipeline is $Q = 82 \text{ bbl/min}$. It is known that 1bbl = 42 gal, 1 gal = 231 in3, and 1 m3 = 1000 L. In SI, this value of Q is equivalent to
 (a) 217 L/s. (b) 223 L/s. (c) 228 L/s. (d) 233 L/s. (e) 238 L/s.

4. A. (10%) Describe the **rigid-body principle** versus the **principle of transmissibility**.

B. (10%) The **moment** of a force F about a point P is actually the same as the **moment** of this force F about a specific axis. Describe the **location** and the **orientation** of this **specific axis**.