Course: Solid State Physics
Grading: Home-work (40%), Mid-term exam (30%), final-term exam (30%)

Prerequisite: PHYS 5413

1) The Drude theory of metals
 - Drude model, Electrical conductivity
 - Hall effect, Thermal conductivity
2) The Sommerfeld theory of electrons
 - Ground-state energy of electron gas
 - Thermal properties of electron gas
3) Crystal lattice
 - Bravais lattice, Lattice vectors
 - Primitive cell, Wigner-Seitz cell, Conventional cell
 - Common crystal structures
4) Reciprocal lattice
 - Reciprocal lattice, Brillouin zone
 - Miller indices of lattice planes
5) X-ray diffraction
 - Bragg and von Laue formulations
 - Structure factor and atomic form factor
6) General theory of electrons in a periodic potential
 - Bloch’s theorem
 - Born-von Karman boundary condition
 - Crystal momentum, Density of states
7) Electrons in a weak periodic potential
 - Formation of energy gap
 - Three schemes to describe energy bands, Fermi surface
8) Theory of phonon vibration
 - General theory of lattice vibration
 - One- and three-dimensional lattice vibrations
9) Cohesive energy
 - Lennard-Jones potential, cohesive energy, bulk modulus, Madelung constant, covalent crystals

Office: Physics 207
Office hours: MWF 3:00-4:00PM