Short Communication

Sequence Change and Phylogenetic Signal in Muscoid COII DNA Sequences

ALLEN L. SZALANSKI* and CARRIE B. OWENS

Department of Entomology, University of Arkansas, 319 Agriculture Building, Fayetteville, AR 72701, USA

(Received 3 December 2002)

The complete DNA sequence of the mtDNA cytochrome oxidase II gene from house fly, Musca domestica, face fly, Musca autumnalis, stable fly, Stomoxys calcitrans, horn fly, Haematobia irritans, and black garbage fly, Hydrotaea aenescens, are reported. The nucleotide sequence codes for a 229 amino acid peptide. The COII sequence is AT rich (74.1%), with up to 12.3% nucleotide and 8.4% amino acid divergence among the five taxa. Of the 688 nucleotides encoding for the gene, 135 nucleotide sites (19.6%) are variable, and 55 (8.0%) are phylogenetically informative. A phylogenetic analysis using three calliphorids as the outgroup taxa, indicates that the two haematophagus species, horn fly and stable fly, form a sister group.

Keywords: Muscidae; Diptera; mtDNA; Cytochrome Oxidase II

Mitochondrial genes have been studied increasingly because of the ease of recovering genetic information that may be useful for investigating molecular and organismal evolution. The predominance of maternal inheritance, lack of extensive recombination, and accelerated rates of nucleotide substitution are features that have favored the use of mtDNA as an informative evolutionary marker.

Most studies of dipteran species are related to the occurrence of flies of medical and economic importance. The Dipteran family Muscidae has several important subfamilies including the Stomoxyinae, Muscinae, and Phaoniinae. Flies of the subfamily Stomoxyinae have a slender, strongly sclerotized proboscis and feed on the blood of warm-blooded vertebrates. There are three genera in the subfamily, Haematobia Lepeletier and Serville, Lyperosiops Townsend, and Stomoxys Geoffroy. The most important species in North America are the horn fly, Haematobia irritans (L.), a pest of cattle, and the stable fly, Stomoxys calcitrans (L.), a pest of humans and livestock. Flies of the subfamily Muscinae are ubiquitous. Species of the genus Musca Linnaeus, notably the house fly, Musca domestica L. are important as pests and disseminators of disease. The other species of Musca, M. autumnalis De Geer, is an important pest of livestock in the United States since its introduction in 1952. The black dump fly, Hydrotaea aenescens (Wiedemann) is a member of the subfamily Phaoniinae. The larvae are commonly found in association with decaying vegetable and animal matter, and the black dump fly has been used extensively for biology control of house flies (Turner et al., 1992).

In this work, we describe nucleotide and amino acid variation among 5 economically important muscid species representing 3 subfamilies for the mtDNA COII gene. These results should allow the identification of species-specific genetic markers, and analysis of phylogenetic information for understanding dipteran evolution.

DNA sequencing of the amplicon revealed that it averaged 780 bp in size. The 3’ portion of the COI gene along with the tRNA leucine were removed from the DNA sequence leaving 688 bp of the COII gene (Fig. 1). The average base frequencies were A = 0.33, C = 0.13, G = 0.13, and T = 0.41. Pairwise Tajima-Nei distances (Tajima and Nei, 1984) among the muscid taxa ranged from 8 to 12% (Table I). Genetic divergence between Musca domestica and

*Corresponding author. Tel.: +1-479-575-4342. Fax: +1-479-575-4342. E-mail: aszalan@uark.edu

ISSN 1042-5179 print/ISSN 1029-2365 online © 2003 Taylor & Francis Ltd
DOI: 10.1080/1085566031000141144
M. autumnalis was 0.8% which falls in the levels of genetic divergence observed among species of the globeflower fly, *Chiastocheta* spp. for COI and COII (Després et al., 2002). The nucleotide sequence codes for a 229 amino acid peptide (Fig. 1). Up to 19 of the amino acids were variable, with amino acid divergence ranging from 2.1 to 8.4% (Table I). The aligned DNA data matrix, including the outgroup taxa (available at TreeBASE, http://www.treebase.org, study accession number SN1281) resulted in a total of 688 characters. Of these characters, 180 (26%) were variable and 105 (15%) were phylogenetically informative. Maximum likelihood analysis (Fig. 2), of the aligned Muscidae species and the outgroup taxon resulted in a consensus tree with several distinct branches. The horn fly and stable fly formed a sister group, as did the two *Musca* species.

In this study, we have successfully amplified and sequenced the mtDNA COII gene from five muscid fly species. The COII gene was 688 bp pair in length, codes for a 229 amino acid protein and was 74% AT rich. The COII gene length of 688 bp is shared with *Cochliomyia hominivorax* and *Drosophila yakuba* (Lessinger et al., 2000). The A+T content of COII gene from the muscid flies, was similar to other Diptera including *Cochliomyia hominivorax* (Diptera: Calliphoridae), *D. yakuba* (Diptera: Drosophilidae), and *Chiastocheta* spp. (Diptera: Anthomyiidae) which are 72.5, 73.9, and 73.6% AT rich, respectively (Lessinger et al., 2000; Després et al., 2002). The protein size of 229 amino acids for the muscid flies

TABLE I

<table>
<thead>
<tr>
<th>Species</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. autumnalis</td>
<td>–</td>
<td>0.02</td>
<td>0.05</td>
<td>0.06</td>
<td>0.08</td>
</tr>
<tr>
<td>M. domestica</td>
<td>0.08</td>
<td>–</td>
<td>0.04</td>
<td>0.05</td>
<td>0.07</td>
</tr>
<tr>
<td>H. irritans</td>
<td>0.10</td>
<td>0.09</td>
<td>–</td>
<td>0.04</td>
<td>0.06</td>
</tr>
<tr>
<td>S. calcitrans</td>
<td>0.12</td>
<td>0.10</td>
<td>0.08</td>
<td>–</td>
<td>0.05</td>
</tr>
<tr>
<td>H. aenescens</td>
<td>0.12</td>
<td>0.10</td>
<td>0.09</td>
<td>0.11</td>
<td>–</td>
</tr>
</tbody>
</table>

FIGURE 1 The nucleotide sequence and predicted amino acid sequence of *Stomoxys calcitrans*. Alcohol preserved specimens were allowed to dry on filter paper, and DNA was extracted from individual thoraces using the Puregene DNA isolation kit D-5000A (Centra, Minneapolis, MN). Extracted DNA was resuspended in 50 μl of Tris–EDTA and stored at –20°C. Polymerase chain reaction (PCR) was conducted using the primers TL2-J-3037 (5’-ATGGCAGATTAGTGCAATGG-3’) designed by Liu and Beckenbach (1992) and described by Simon et al. (1994) and Miura et al. (1998), and primer TK-N-3785 (5’-GTTTAAGAGACCAGTACTTG-3’) from Simon et al. (1994). These primers amplify a 3’ portion of the mtDNA COI gene, tRNA-Leu, and the entire COII gene. PCR reactions were conducted using 1 μl of the extracted DNA (Szalanski et al., 2000a,b), with a profile consisting of 35 cycles of 94°C for 45 s, 46°C for 45 s and 72°C for 60 s. PCR product was resolved on 1% agarose gels per Taylor et al. (1996). Amplified DNA from individual flies was purified, and concentrated using Microcon-PCR Filter Units (Millipore, Bedford, MA). Samples were sent to The University of Arkansas DNA Sequencing Facility (Fayetteville, AR) for direct sequencing on both strands using an ABI Prism 377 DNA sequencer. GenBank accession numbers for the flies subjected to DNA sequencing in this study are AY184815 to AY184819.
was similar to *C. hominivorax* (228 a.a.) and *D. yakuba* (227 a.a.) (Lessinger et al., 2000).

Results of the present study were congruent with those derived from morphological classification (Stone et al., 1965) by supporting the classification of horn fly and stable fly in the subfamily Stomoxyinae. Our study confirmed the phylogenetic relationship between the two haematophagus species, stable fly and horn fly. Despite their importance as pest species, the phylogenetic relationships among Muscids using molecular markers is poorly understood. Bernasconi et al. (2000) evaluated a 1100 bp region of the entire mtDNA COI and a 5′ portion of the COII gene for a phylogenetic analysis of the Muscoidea, using only two muscids, *M. domestica* and *Fannia armata*. Vossbrinck and Friedman (1989) used partial 28S rRNA sequences for a phylogeny of cyclorrhaphous Diptera including *Stomoxys calcitrans*, *Musca domestica*, *Glossina simulans* and *Fannia scalaris*. The only supported relationship among these taxa was *S. calcitrans* and *M. domestica* forming a sister group. Our study found the studied muscid taxa to be monophyletic relative to *Cochliomyia hominivorax*. Because of the limited number of taxa used, we cannot confirm the classification of the other subfamilies used in this study.

This study provides a baseline for the phylogenetic relationships of the economically important family. The COII marker contains adequate information for phylogenetic assessment of the five muscids studied and should prove useful for understanding the relationships of other muscids, and could provide the basis for species specific molecular diagnostic markers.

Acknowledgements

We thank A.B. Broce for providing the *Musca autumnalis* samples. This work was supported by Southern Region Project S-1006 Insect and Poultry Manure Management: Elements Relative to Food.
Safety and Nuisance Issues, and by the University of Arkansas, Arkansas Agricultural Experiment Station.

References

